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Relation Between the Kiihler Equation and the 
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The formal analogy and the substantial differences between the K~hler equation 
and the Dirac equation are explained in terms of the relativistic compatibility of 
a common differential operator on the Clifford algebra C with two distinct 
representations of the Lorentz Lie algebra on C. 

1. ~ T R O D U C T I O N  

Any first-order linear homogeneous relativistic field equation in Min- 
kowsld space-time is characterized by a vector space in which the fields 
take their values, a representation of the Lie algebra associated with the 
homogeneous Lorentz group specifying the transformation properties of  the 
fields, and a differential operator annihilating the physically admissible fields. 
The relativistic invariance of the equation is guaranteed by certain relations 
between the operators of  the representation and the coefficients of the differen- 
tial operator. 

The formal analogy between the Kiihler equation and the Dirac equation, 
which has drawn some attention in the last two decades (Graf, 1978; Becher 
and Joos, 1982; Benn and Tucker, 1983; Talebaoui, 1994, 1995), can be 
transparently explained in this perspective, together with the substantial differ- 
ences between the two equations. 

We point out in this paper that the two linear representations of the 
Lorentz Lie algebra carried naturally by the Clifford algebra associated with 
the Minkowski metric specify two distinct relativistic equations associated 
with the same differential operator. One of the equations is just the Kiihler 
equation, which decomposes uniquely into four inequivalent components of 
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Duff in -Kemmer  type. The other equation, which we call the C l i f f o r d  e q u a -  

t i o n ,  decomposes (in many ways) into four components, all equivalent to the 
Dirac equation. This accounts for the analogy and for part of  the differences. 

Further differences are made manifest by the remark that, unlike the 
decomposition of the K ~ l e r  equation, which is unique and carries through 
unaltered from Minkowski to curved space-time (so that a general K~ihler 
field is just a set of four noninteracting meson fields), the decomposition of 
the Clifford equation does not hold in general in curved space-time, so 
that a Clifford field is essentially distinct from a set of  four noninteracting 
Dirac fields. 

2. E X T E R I O R  A L G E B R A ,  C L I F F O R D  A L G E B R A ,  AND T H E  
I D E N T I F I C A T I O N  O F  T H E I R  U N D E R L Y I N G  L I N E A R  
SPACES 

Let M be the real four-dimensional Minkowski vector space, with metric 
tensor represented, with respect to any orthonormal basis, by the matrix (~ih) 
-- d i ag ( -1 ,  - 1 ,  - 1 ,  1) or, in contravariant form, by the matrix (Xl ~h) with 
the same entries. The indices run from 1 to 4. 

The e x t e r i o r  a l g e b r a  associated with M can be defined as the associative 
algebra A with unit determined by four generators a ~, a 2, a 3, a 4 with the 
relations 

a i ^ a h -t- a h A a i = 0 (i, h = 1, 2, 3, 4) (1) 

where A denotes the product, called e x t e r i o r  p r o d u c t .  This definition involves 
the dimension of  the linear space M, but not the metric. 

A basis of  A is constituted by the following set {a} of  16 elements: 

where 

a ih ~ a i A a h, 

1 

a | a 2 a 3 a 4 

a 12 a13 a 14 a 23 a 24 

a123 a124 a134 a234 

a 34 (2) 

al2M 

a ihk =-- a i A a h A a t, a 1234 ------ a I A a 2 A a 3 A a 4 (3) 

If the four abstract elements {a ~} are interpreted as a set {e i} of linearly 
independent vectors of the space M* dual to M, the abstract algebra A just 
defined is identified with the algebra of covariant antisymmetric tensors of M, 
with the product given by the antisymmetrized tensor product, i.e., with the 
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quotient of the tensor algebra over M* with respect to the two-sided ideal 
generated by the elements e i | e h + e h ~ e i, where | denotes the tensor product. 
With such an interpretation, the basis elements (2) will be denoted by 

1 

e I e 2 e 3 e 4 

e 12 e 13 e 14 e23 e24 e34 

e123 e124 el34 e234 

(4) 

1 

b I b 2 b 3 b 4 

b 12 b13 bl4 b 23 b 24 

b123 b124 bl34 b234 

b 34 (6) 

b1234 

e1234 

and the basis as a whole by {e}. The subspaces of A (q) of A generated by 
the basis elements with q indices (q = 0, 1, 2, 3, 4) are constituted of 
homogeneous  f o r m s  o f  degree q. 

Any other basis {f} of M*, withf i  = lihe h and (l~) any regular matrix, 
is a set of generators of A satisfying relations analogous to (1), and the 
elements of the set {f} -- { 1, fi, fi~, fihk, f1234; i < h < k} of A constructed 
from this basis by analogy with (2) and (3) constitute a basis of A. The two 
bases {e} and {f} give the same gradation to A, and the components of the 
homogeneous forms of degree q transform like the strict components of 
covariant antisymmetric tensors. All this holds, in particular, if the two bases 
{e i} and {fi} are orthonormal with respect to the Minkowski metric, as we 
shall always assume from now on. Consequently the matrix (l~) introduced 
above will be assumed to represent a Lorentz transformation. 

Similarly, the Clifford algebra C associated with M can be defined as 
the associative algebra with unit determined by four generators b 1, b 2, b 3, b 4 
with the relations 

b i v b h + b h v b i = 2~q ih (i, h = 1, 2, 3, 4) (5) 

where v denotes the product, called Clifford product,  and the right-hand side 
must be interpreted as the unit of the algebra multiplied by the number 2"q ~h. 
In contrast to the definition of the exterior algebra, the definition of the 
Clifford algebra involves the metric as well as the dimension of M. 

A basis of C is constituted by the set {b} of 16 elements defined by 
(2) and (3) with the replacement of a with b and of the exterior product with 
the Clifford product: 
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bih =- b i v b h, b ihk =- b i v b h v b k, b 1234 m b I v b 2 v b 3 v b 4 (7) 

If the four abstract elements {b"} are interpreted as the elements of an 
o r t h o n o r m a l  basis { e  i] of the space M* dual to M, the abstract algebra C 
just defined is identified with the quotient of the tensor algebra over M* 
with respect to the two-sided ideal generated by the elements e i | e h + e h 

| e" - 2a1 ih. As for the exterior algebra, with such an interpretation the basis 
elements (6) will be denoted by {1, e i, e ih, e ihk, el234; i < h < k}, and the 
basis as a whole by {e}. Any other orthonormal basis of M* with elements 
f i  = l~e h (where the coefficients l~, represent a Lorentz transformation) is a 
set of generators of  C satisfying relations analogous to (5), and the set {f} 
related to the basis {fi} as the set {e} is related to {e i} is also a basis of C. 

The correspondence between the two bases {e} and {f} of the Clifford 
algebra and the correspondence between the two bases of  the exterior algebra 
that we denoted by the same symbols {e} and {f} are identical, because 
their derivations do not involve the relations which distinguish the two alge- 
bras [namely, relations (1) and (5) for equal values of  the indices]. Therefore 
C and A can be identified as l i n e a r  s p a c e s  (not as algebras!), in a Lorentz- 
invariant way, simply by identifying the respective bases that we have already 
denoted by the same symbols. 

In particular this identification entails e ~ v e h --- e i A e h for i ~ h, while 
e ~ v e i = .qii, so that the two algebraic operations are connected by e i V e h 

= e i A e h + .qih, equivalent to the relation 

,~ v / = , ,  A,r + a1(~,,r (8) 

for any elements a and f of degree 1 in A -- C. More generally, for any 
homogeneous 1-form a and any inhomogeneous f o r m . ~  one has 

a v,_,~ = a  A~ '  + 4 , ( ~ )  (9) 

where 4, is the usual i n t e r i o r  p r o d u c t  operator characterized as the linear 
operator on A which vanishes on scalars and transforms any decomposable 
q - f o r m f  ~ A ,r A "'" ^ ~ into the (q -- l)-form 

i ~ ( f l  A if'2 A " ' "  A f q )  

q 

- -  ~ ( - l y + ' . q ( , , ,  ~),r A ,r  " ' "  A ~ ^  " ' "  A 
i=l 

(where f /  denotes a suppressed factor) (Crumeyrolle 1990, p. 35). Inciden- 
tally, relation (9) suggests an extension of the definition of the interior product 
which allows the 1-form ,~ to be replaced by an arbitrary inhomogeneous 
form~'.  In fact one can set 

, ~ ( ~ )  = ~ r  - ~ r  ^ ~ '  
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3. THE NATURAL REPRESENTATIONS OF ~ ( 3 ,  1) CARRIED 
BY THE CL IFFORD ALGEBRA 

In this section we denote by V the linear space underlying the Clifford 
algebra C, identified with the linear space underlying the exterior algebra A 
as above. The symbols A and C will be reserved to V endowed with the 
respective associative algebra structures. We shall also denote by Cze the Lie 
algebra associated with C (i.e., the linear space V with the Lie product defined 
as the Clifford commutator [a, b] ---- a v b - b v a). We endow V with a 
basis {e} constituted of the elements listed in (4), and we interpret the four 
elements {e  i} of degree 1 as an orthonormal basis of M*, as above. 

Setting, for a < b, 

~k ab ~ l e a b  ~ --~k ba (10) 

we find that the elements h ~ satisfy the commutation relations 

[h ab, k Cd] = "q~h ad - "q'~h ~ - "qbahac + "qaahbc (11) 

which characterize the structure of the Lie algebra 3o(3, 1) of the homoge- 
neous Lorentz group. Therefore the subspace V (2) C V of degree 2 is a Lie 
subalgebra of C~ isomorphic to 3o(3, 1), and two distinct representations of 
30(3, 1), "reg" and "ad," acting on the same carrier space V, appear naturally: 

"reg" is defined as the restriction to the Lie subalgebra V (2) C C.~ of 
the representation of C_~ determined by the regular representation of C. Thus 
its action on V is 

reg(a): v ---> a v v (12) 

(a E V (2),v e V). 
"ad" is defined as the restriction of the adjoint representation of C~ to 

its Lie subalgebra V (z). Thus its action on the carrier space V is 

ad(a): v - - - > a v v - v v a - - [ a , v ]  (13) 

(a ~ V (2),v ~ V). 
The representation "ad" corresponds to the natural action of the homoge- 

neous Lorentz group on differential forms. Under its action the homogeneous 
subspaces A (q) ~ V (q) of V are invariant, but the left ideals of C are not. 

On the other hand, the regular representation of the algebra C can be 
decomposed in many ways into four subrepresentations (see Appendix), all 
equivalent to the spin representation by the very definition of the latter 
(Crumeyrolle, 1990; Benn and Tucker, 1987). Therefore under the representa- 
tion "reg" the left ideals corresponding to any such decomposition are invari- 
ant, while the homogeneous subspaces of V are not. 

Thus the decomposition of an inhomogeneous exterior form determined 
by a decomposition of C into minimal left ideals is not a Lorentz-invariant 
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process. Though the component forms arising from such a decomposition 
belong to subspaces that transform like Dirac spinors under the action of the 
representation "reg", they cannot be properly regarded as spinors because their 
own transformation law is given by the representation "ad". (The situation is 
reminiscent of the decomposition of a vector with respect to a basis, where 
the components cannot be properly regarded as scalars in the actual vector 
representation, though they belong to one-dimensional subspaces which 
would behave as scalars if the vector representation were replaced by the 
trivial representation of the group.) 

4. THE RELATIVISTIC EQUATIONS ASSOCIATED W I T H  THE 
NATURAL REPRESENTATIONS 

The above remarks on the lack of a relativistically significant algebraic 
relationship between spinors and exterior forms apply, of course, to spinor 
fields and differential forms as well. There is, however, a well-known affinity 
between the Dirac equation and the K~ihler equation, whose origin will be 
exhibited within the general classification scheme for first-order linear homo- 
geneous re|ativisticatly invariant field equations. 

Let @ - -  ~(x) denote a field defined in Minkowski space-time, with 
values in the representation space S of some linear representation lr of SI(2, 
C) (x stands for the Cartesian coordinates x 1, x 2, x 3, x 4 associated with a 
reference frame with basis vectors e l, e 2, e 3, e4). Recall (Gel'fand et al., 
1963) that the Lorentz invariance of an equation of the form 

L h Of~ ~-ff + k~  = 0 (14) 

(where L l, L z, L 3, L 4 are four linear operators on S, and k is a constant) is 
guaranteed by the commutation relations 

[ L h, "tr ab] = "q~ - 'rlt'hL a (15) 

The Lie algebra do(3, 1) is identified as usual with ~[(2, C), and in (15) the 
operators "a ab - "tr(l ab) denote the representatives of a basis (l '~') of ~0(3, 1) 
with respect to which the structural relations of the Lie algebra have the 
same form as in (11), namely 

[i ab, Icd] = ,rlbc lad -- ,qac lbd -- .qbdlac + 'qadlbc 

If a representation xr is given, to construct a relativistic equation of type (14) 
it is sufficient to determine four operators L h acting on S and satisfying 
relations (15) with the operators "rr ~b. 

Now consider the vector space V underlying the Clifford algebra C, 
endowed with a basis {e}, and the two representations "reg" and "ad" of  the 
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Lorentz Lie algebra defined in Section 3. It is easy to check that the same 
set of four operators L h defined by 

Lh: a ---> e h v a (16) 

satisfies relations (15) with the operators "rr ab of both representations. In fact, 
if "rr is identified with the representation "reg", one has, from the definitions 
(10) and (12) and using the anticommutation relations (5), 

[e h, ~k ab] -~ [e h, l e a  v e b] 

= �89  h v e a  v e b - � 8 9  e b v e h 

= ~aheb -- ~lbhea 

Similarly, if -tr is identified with "ad", one has, for v ~ V, 

e h v [}k ab, v] -- [}k ab, e h v v] 

= � 8 9  e a v  eb v v - -  e a v  e b v  e h v  v)  

= (~l~ahe b _ .qbhea) V V 

Thus in both cases the relations (15) hold. 
Consequently, when �9 takes its values in the Clifford algebra, the 

equation 

e h v ~ +  k~  = 0  (17) 

which cannot be regarded as a relativistic equation until the action of do(3, 
1) on C has been specified, turns out to describe two d i s t i n c t  relativistic 
equations according to whether the representation "ad" or the representation 
"reg" is adopted. 

The first choice is just the K~ihler equation, because, on account of (9), 
the differential operator e h v 0/0x h turns out to be identical with the K~thler 
operator d - ~, where d and ~ denote, respectively, the operators of differentia- 
tion and codifferentiation of differential forms. It turns out that the Ki~hler 
equation decomposes uniquely into four equations of Duffin-Kemmer type 
(Cantoni, 1996). 

The second choice gives rise to the relativistic equation that we shall 
call the C l i f f o r d  e q u a t i o n .  If one chooses a basis of C adapted to one of its 
decompositions into minimal left ideals (see Appendix), the Clifford equation 
decomposes into four components equivalent to the Dirac equation (Tale- 
baoui, 1995). 
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5. THE "REGULAR" CLIFFORD BUNDLE AND THE 
"CLIFFORD EQUATION" 

The above remarks can be summarized as follows: we are in the presence 
of two distinct fiber bundles, both with Minkowski space-time as base space, 
the Clifford algebra C as typical fiber, the homogeneous Lorentz group as 
structure group. They differ by the actions of the group on the fiber, which 
are distinct. 

One of the actions, which might be called bosonic, defines a Clifford 
bundle (Crumeyrolle, 1990) and corresponds to the K~ihler equation, whose 
decomposition gives rise to the Duffin-Kemmer equations, so that a Kahler 
field is just a set of four independent fields: scalar, pseudoscalar, vector, and 
pseudovector (Cantoni, 1996). 

The other action, which might be called fermionic, defines what we 
shall call a regular Clifford bundle (on account of its relation with the regular 
representation), and corresponds to what we have already called the Clifford 
equation, whose decomposition in Minkowski space gives rise to four copies 
of the Dirac equation. 

The two equations further differ significantly with regard to the extendi- 
bility of their decomposition properties: in the unique decomposition of the 
K~thler equation into four equations of Duffin-Kemmer type the flatness of 
the base space is irrelevant, whereas the decomposition of the covariant 
version of the Clifford equation, which is possible in many ways on Minkow- 
ski space, becomes impossible, in general, if the base space is endowed with 
curvature. Therefore the Clifford field is not a mere juxtaposition of four 
independent Dirac fields. 

Finally we notice that, on a curved base space, the very identity of the 
differential operators which was at the origin of the analogies between the 
K~hler equation and the Dirac equation is lost, on account of the undisguisable 
difference in the connection coefficients, which are essentially dependent on 
the transformation properties of the fields. 

APPENDIX. THE DECOMPOSITIONS OF THE REGULAR 
REPRESENTATION 

Take any set {~t h} of Dirac matrices and use them to represent the 
Clifford algebra C by the a lgebra~ of 4 • 4 matrices via the following 
correspondence from the basis elements (6) to the matrices: 1 ---> I (unit 
matrix), b h ---> ~h. bhk __~ ,~h,~k, bhkl ~ ,~h,~k,~l. bhklm ~ ,~h,~k~l,~rn. Since the 

matrices corresponding to the basis elements of C are a basis of.~t', the four 
matrices E (r = l, 2, 3, 4), defined as the matrices with all the entries equal 

r 

to zero except for the intersection of the rth row with the rth column, which 
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is equal to 1, represent four primitive idempotents e(r) of C. The corresponding 
minimal left ideals are represented by the four sets {mE; m ~ t ' }  of matrices 

�9 r , 

with nonzero entries only in the rth column, and m the corresponding decom- 
position of Jr" the generic 4 • 4 matrix m is expressed as the sum of four 
matrices with three columns of zeros and the remaining column equal to the 
corresponding one in m. 

For any regular 4 • 4 matrix T, the four matrices TET -1 represent an 
�9 r 

alternative choice of pairwise orthogonal idempotents. Distract choices of T 
lead, in general, to distinct decompositions of C. 
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